If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2+48n+42=0
a = 6; b = 48; c = +42;
Δ = b2-4ac
Δ = 482-4·6·42
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-36}{2*6}=\frac{-84}{12} =-7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+36}{2*6}=\frac{-12}{12} =-1 $
| 10y=60=180 | | 486=12+6x/11 | | 0.5(–4+6x)=13x+23(x+9) | | 5.8.1=r | | 7(-2x-2)=-154+7x | | 5v-1=-1 | | 20=-x+8 | | 2c=9=13 | | 7x-2x-4=42 | | 3.3g+3=1.3g+13 | | 13+2p=1 | | x/2x+2=27/40 | | 2(c+8)-6=9c+3 | | 4m+5-3m=-9 | | 5u-5=35 | | 23b=92 | | -a/3+8=10 | | (2^4x)=2^x+9 | | 64x2-5=20 | | 52+c=136 | | -2(5+y)=20 | | 3x^2+4=-104 | | -t/4=-10 | | -4/5n+1=-13 | | X²+y²=5 | | 4d-24+8d=10d-10+3+2d | | 12-2a=-8a | | 18b+18=6b+18 | | -5x-3+1=12 | | 7.8x-15=8.4 | | -5+g/2=3 | | x/3-36=22 |